
408 SYMMETRY OF INCOMMENSURATE CRYSTAL PHASES. I 

JANNER, A. & JANSSEN, T. (1977). Phys. Rev. B, 15, 643- 
658. 

JANNER, A. & JANSSEN, T. (1979). Physica, 99A, 47-76. 
JANh~R, A. & JANSSEN, T. (1980). Acta Cryst. A36, 408- 

415. 
JANNER, A., JANSSEN, T. & DE WOLFF, P. M. (1979). 

Modulated Structures-1979 ( Kailua-Kona, HawaiO. Am. 
Inst. Phys. Conf. Proc. 53, 81-83. 

JANNER, A., JANSSEN, T. & DE WOLFF, P. M. (1980). 
(3 + d)-Dimensional Bravais Classes. To be published. 

JANSSEN, T. (1977). In Electron-Phonon Interactions and 
Phase Transitions, edited by T. RISTE, pp. 172-180. 
New York: Plenum Press. 

KUCHARCZYK, D., PIETRASKO, A. & LUKASZEWICZ, K. 
(1978). Acta Cryst. A34, S16. 

LITVlN, D. B. & OPECHOWSKI, W. (1974). Physica, 76, 
538-554. 

MONCTON, D. E., AXE, J. D. & DISALVO, F. J. (1977). 
Phys. Rev. B, 16, 801-819. 

OPECHOWSKI, W. & GUCCIONE, R. (1965). In Magnetism, 
Vol. IIA, edited by G. T. RADO & H. SUHL, pp. 105--165. 
New York: Academic Press. 

OVERHAUSER, A. W. (1962). Phys. Rev. 128, 1437-1452. 
OVERHAUSER, A. W. (1968). Phys. Rev. 167, 691-698. 
PYNN, R., PRESS, W. & SHAPIRO, S. M. (1976). Phys. Rev. B, 

13, 295-298. 
TSUNODA, Y., MORI, M., KUNITOMI, N., TERAOKA, Y. & 

KANAMORI, J. (1974). Solid State Commun. 14, 287- 
289. 

WOLFF, P. M. DE (1974). Acta Cryst. A30, 777-785. 
WOLFF, P. M. DE (1977). Acta Cryst. A33, 493-497. 

Acta Cryst. (1980). A36, 408-415 

Symmetry of Incommensurate Crystal Phases. II. Incommensurate Basic Structure 

BY A. JANNER AND T. JANSSEN 

Institute for Theoretical Physics, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 

(Received 14 July 1979; accepted 5 November 1979) 

Abstract 

In this second part [part !: Acta Cryst. (1980), A36, 
399-408] the superspace-group approach is formulated 
for a class of crystals (called composite crystals) which 
involve a basic structure composed of subsystems, each 
one having three-dimensional space-group symmetry, 
but being mutually incommensurate. By taking into 
account the interaction among these subsystems, or 
other second-order effects, one is led to the actual 
structure, which very often is modulated, and in any 
case incommensurate. Neither the basic structure nor 
the actual one has a three-dimensional space-group 
symmetry but both allow a superspace-group charac- 
terization of their symmetry properties. The aim of the 
present paper is to show how these concepts apply in 
practice. Accordingly, two composite crystals, exten- 
sively studied in the literature, are considered from 
the present point of view: the organic compound 
(TTF)7Is_ x, i.e. C42H2sS2s.Is_x, and the polymercury 
cation compound Hg3_ ~ AsF 6. The regularities found in 
these two compounds are interpreted and fit naturally 
with the corresponding superspace-symmetry groups. 

1. Introduction 

In a previous paper (Janner & Janssen, 1980), here- 
after denoted by I, incommensurability was considered 
as existing between a so-called basic structure (which 

0567-7394/80/030408-08501.00 

does not necessarily exist as such) with space-group 
symmetry and a periodic deformation (modulation) of 
this basic structure. In the present paper we discuss the 
case where it is not possible to define a basic structure 
with three-dimensional space-group symmetry. This 
happens, for example, when a crystal consists of several 
interpenetrating subsystems, each of which has the 
structure of a, possibly modulated, crystal, the basic 
structures of the different subsystems being mutually 
incommensurate. The whole crystal can then no longer 
be seen as arising from a modulation of a basic struc- 
ture with space-group symmetry. 

In the following we shall first analyze the symmetry 
of the basic structure (§2), which is a (3 + d0)-dimen- 
sional superspace group and express the relation of 
superspace-group elements with those of the space 
groups of the subsystems. We then consider in §3 the 
symmetry of the modulated crystal, which is again a 
superspace group [now in (3 + d) dimensions]. Finally, 
in §§4 and 5 the results obtained are applied to two 
examples: (TTF)~Is_ x and Hg3_sAsF ~. 

2. Symmetry of the basic structure of the composite 
crystal 

Suppose that the basic structure consists of N sub- 
systems labelled by v. The positions of the atoms in the 
vth subsystem are 

ro(nv, vj) = nv + rvj, (1) 
© 1980 International Union of Crystallography 
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where n~ belongs to a lattice Av and r~ i is the position of 
the j t h  atom in the unit cell of this lattice. The basis of 
A~ is denoted by avl, av2, av3 and its reciprocal by a~,* 
av2,* av3* . . . .  Now choose a minimal set a*, , a~' + do (3 < 3 

* may be expressed as + d  o < 3N) such that every avi 
3+do 

* - * (2) a~/-- Z Z}'kak 
k=l  

with integral coefficients Z}' k. The set {a*, ... ,  a~' + do} can 
be seen as the projection of (3 + do) basis vectors 
spanning the superspace and the results of I can be 
applied. 

The reciprocal lattice, X*, in superspace has a basis 
given by 

a~' = (a*,0), i =  1, 2, 3 
(3) 

* * . . . ,  a~+j=(a3+j, bj)  , j =  1,2, d o . 

The reciprocal basis to (3), 

a i=(a t , - -bdo+.  3, i = 1 , 2 , 3 ,  (4) 
a3+ i=  (0,bj), j = 1, 2, .. . ,  d 0, 

spans the lattice 27. Moreover, expressing a~'÷j in a*, a~', 
a* one gets a matrix a ° by 

3 

a ~ + j :  ~. o'~ia~', j =  1 , 2 , . . . , d  o. (5) 
i=1 

If one acts with the translations of 27, generated by (4) 
on the positions (1), one obtains the atom positions of 
the supercrystal. We define the linear mappings 7r, by 

3 

7ub j=  Y Z}'3+ja,i, ( v =  1 . . . . .  U ; j =  1 . . . . .  do), (6) 
i=1 

and it follows that 

exp ik i. t = exp ik. n~ t, any t E V 1, (7) 

where k = (k, kt) is a vector of 27*. Then, the positions of 
the atoms in the supercrystal are 

( n v + r  e - n ~ t , 0 ,  a n y t E V  t , n~EAv .  (8) 

Equation (8) gives the embedding of the incommensur- 
ate three-dimensional basic structure into a (3 + d0)- 
dimensional superspace. This supercrystal has the 
lattice 27 as translation symmetry.  Hence, its symmetry 
is a superspace group G 0. The elements of this group 
are pairs 

g =  (gE,gt) = ({REIvE}, {Rtlvt}), (9) 

such that 

n0(r) = jSo(g -~ r). (10) 

In particular, for the positions (8) the condition (10) 
takes the form 

(Re(nv + r v j -  nvt) + v E, R, t  + vt) 
(11) 

= (n~ + r c s , -  n¢t ' ,  t'). 

The symmetry condition (11) implies the following 
relations: 

R E Av=  A¢ (12) 

Re(n  ~ + rq) + v e + n¢ v I = n¢ + rcy, (13) 

and 

R E n , t  = h e r  I t. (14) 

We omit here the detailed derivation. Equation (13) 
implies that if a superspace-group element transforms 
the vth subsystem into itself, the element {Rely  e + 
n~vl} belongs to the space group G~ of this subsystem. 
This is in particular always the case when there is only 
one subsystem. In that case, d o = 0, n~ vt = 0 and (13) 
is equivalent with (17) of I. 

3. Symmetry  of  the modulated composi te  crystal 

As already mentioned in the Introduction, mutual 
perturbation of the atomic positions of the various sub- 
systems leads to displacive modulation effects charac- 
terized by wave vectors belonging to the Fourier 
spectrum of the basic structure, but other mechanisms 
can occur and give rise to more general periodic 
deformations. We restrict our considerations to dis- 
placively modulated composite crystals. 

If we include modulation, the atom positions of the 
composite crystal are 

r(n v, v j ) = n v +  r q +  Y fvj(q) exp [iq(n~ + rq)]. (15) 
q 

Since the Fourier spectrum of such a crystal satisfies 
the requirements formulated in I, one can again 
construct the supercrystal associated with the positions 
(15), the construction being similar to that described in 
the preceding section but now in (3 + d) dimensions. In 
this construction it is important to notice that as the 
coefficients Zya÷ j in the relation generalizing (2) are 
zero fo r j  > d 0, one has 

n ~ b j = 0  f o r j = d  0+  1 , . . . , d .  (16) 

The atomic positions of the modulated supercrystal are 
given by 

r(nv, vj, O = {nv + rvj-- nvt + ~ fvj(q) 
q 

x exp [iq(n~+ rq--  nv0 + iql t ] , t} ,  (17) 

N~'3 +d where q = ~i= 1 zi a~ and therefore 

d 

q l =  E z3+jb~" ( 1 8 )  
j = l  

Notice that for N = 1, and thus d o = 0, (17) reduces to 
that of an incommensurate displacively modulated 
crystal as treated in I. 
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For the invariance of the modulation, one gets 

REfvj(q)=fej,(q')exp(iKref + iRqv), (19) 

where the same notation has been used as in I, namely 

g= {R/v}, q = (q ,~)  and q' = REq + K, (20) 

but now K belongs to both the reciprocal lattices A ' a n d  
A*. It follows that G is a (3 + d)-dimensional super- 
space group. 

4. First example: (TTF)715_x 

(a) General description 

When tetrathiafulvalene molecules [i.e. (CaH2S2) 2, 
herein called TTF] and iodine are allowed to mix by 
diffusion, crystals are formed with the approximate 
composition (TTF)7Is, which are incommensurate and 
involve two subsystems: one formed by the TTF 
molecules, the other by the I atoms. The compound, 
whose structure has been analyzed by Johnson & 
Watson (1976) can be described as a composite crystal 
with incommensurate basic structure. The present 
superspace group description is based on Johnson & 
Watson's paper. 

The TTF  subsystem (v -- 1) has a basic structure 
with monoclinic space-group symmetry G l = C2/m. 
The I subsystem (v = 2) has space-group symmetry G 2 
= A2/m. The corresponding two lattices share a basis 
vector along the unique axis, but in the other directions 
they are incommensurable. The basic structure allows 
an approximate supercell description with monoclinic 
lattice A 0 and 12 formula units per unit cell. As in the 
Johnson & Watson (1976) paper all results will here be 
expressed in terms of the basis a, b, e of the lattice A0. 
This does not imply, however, a supercell approxi- 
mation and is only done to allow a more direct 
comparison. 

The TTF  system has a C-centered monoclinic lattice, 
A~, with primitive basis given by 

a l l  ~a~ a12 --~a + ½b, a13 :~}e.  (21) 

The corresponding reciprocal basis is 

a* 1 = (3,1,0),, a*2 = (0,2,0),, a* a -- (0,0,7),. (22) 

The point group 2/m is generated by 2y and mr. There 
are two inequivalent TTF molecules in the primitive 
unit cell at 

r l~=  (0,0,0) and r12 = (1/6,0,1/14), (23) 

and the non-primitive translations associated with 2y 
and my vanish. 

The iodine system has an A-centered monoclinic 
lattice with primitive basis 

32~ = (1/6,0,1/p), a22 = (0,1/2,-1/2q), 
(24) 

a23 - (0,0, l /q) ,  

with p _~ 15 and q ~_ 5. If in (24) one takes the values 
p = 15 and q = 5 one obtains the supercell approxi- 
mation mentioned above and adopted by Johnson & 
Watson (1976). Without neglecting incommen- 
surability, the reciprocal basis of (24) is 

a* t = (6,0,0),, a~2 = (0,2,0),, a* 3 -- (6q/p,l,q),. (25) 

Since in general p and q are irrational, the two lattices 
A 1 and A2 are incommensurable. There is one I atom 
per unit cell. One can choose for its position, 

r21 = ½(a21-  a22) _ (1 /12 ,1 /4 , -1 /12) .  (26) 

The point group is also 2/m. The non-primitive 
translations associated with the point-group generators 
2y and my for this choice of origin are 

v2(Ey ) = v2(mr) = ½a2s. (27) 

(b) Symmetry of the basic structure 

As a basis for the union of A* and A* one may 
choose 

a * = a * l ,  a*=a*2 ,  a~=a*3  and a*=a*3 . (28)  

Indeed, every element of A* or A* appears as an 
integral linear combination of these reciprocal vectors 
because a*1 = 2 a * 1 -  a*2 and a~2 = a*v Hence the 
dimension of the internal space is d o = 1. From (28) it 
follows that the matrices Z ~ defined in (2) are 

Z 1 = 1 0 and Z 2 = 1 0 

0 1 0 0 

The corresponding linear mappings ~ considered in (6) 
are defined by 

zq bl = 0 and zr 2 b 1 • a2y (30) 

This determines the embedding (8). Furthermore,  the 
matrix tr ° of (5) is 

= , , -- a, , y ,  (31) 
p 2p 2 

where a ~_ 2/3 and 7 -- 5/7. With respect to the 
conventional (non-primitive) basis for A1, (1/3,0,0), 
(0,1,0) and (0,0,I/z),  one has 

a° = (a,l,y). (32) 

The lattice 27 in superspace associated with the basic 
structure of this composite crystal is spanned by the 
(primitive) basis 

a I = (a11,-abl) a3 = (a13,-yb1) 
(33) 

a 2 = [a l2 , - (1  - a ) b l / 2 ]  a 4 = (0,bl). 

The Bravais class of 2~ is denoted by pc~,~, (Janner, 
Janssen & de Wolff, 1979). This symbol means that the 

) . (29)  
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holohedry of L" is generated by the point-group 
elements (Re,Rz) given by 

R~ = (2y,--1) and R 2 = ( m y ,  1). (34) 

In the position space the corresponding lattice A 
spanned by a 1 = all, a 2 = a12, a 3 = al3 [see (28)] is C- 
centered monoclinic. In the internal space the lattice D 
is generated by b r 

The superspace-group symmetry of this basic struc- 
ture follows from (12), (13) and (14). Since the two 
subsystems involve different atoms, one has necessarily 
v = v'. Furthermore, the two TTF molecules in the unit 
cell are non-equivalent, so t h a t j  = j ' .  The two elements 
2 r and m r are generators of both point groups of G 1 
and G2 respectively; therefore (12) is satisfied. Equation 
(14) is also satisfied in an evident way. For R e = 2 r one 
has Rz = --1 and (13) is fulfilled with v e = 0 and vt = 
½bl because for v = 1, nlb 1 = 0 and for v = 2, ½n2b I = 
½a23 is the corresponding non-primitive translation given 
in (27). The same reasoning applies to R e = m r and Rt 
= - 1 .  Hence, we have 

v(2y,-1)  = V(my,1) = (0,½bl). (35) 

The first of these non-primitive translations is equiva- 
lent to zero and can be transformed away by a change 
of origin in the internal space. Accordingly, the 
superspace group of the basic structure is 

poem. (36) 

This group is generated by the translations (33) of the 
four-dimensional lattice 27, and by the elements 

1 gl = {(2y, i)1½bl}: (x,y,z,t) --, (--x, y, --z, --t + ~)~37), 

g2 = {(my,1)1½bl}: (x,y,z,t) ~ (x , - -y ,z ,  t + ½). 

We recall that gl is equivalent to {(2r, i)10} by an 
appropriate change in origin. 

(c) Symmetry of  the modulated crystal 

Both the TTF  and the I subsystems are modulated. 
The TTF modulation has a translational and a 
librational part. If we denote the Fourier components of 
these two modes by fly(q) and Llj(q), respectively, one 
has 

and 

q = na* 3, (n integer) (38) 

for n even: fly (na*3) _1_ b, Llj  (ha*3) II b (39) 

for n odd: flj (na*3) II b, Llj (na~3) _l_ b. (40) 

The I modulation has only a translational part  (because 
of the point-atom approximation) with Fourier compo- 
nents fEj(q) for q as follows, 

q =  na* 3 (n integer), fEj(q) _l_ b (41) 

q = a*l + na*3 (n integer), fEj(q) II b. (42) 

All the Fourier components of the translational modes 
are reported to be purely imaginary vectors, those of 
the librational modes being real. The corresponding 
origin is that leading to the non-primitive translations 
indicated in (35). This fixes the various phases involved 
in the modulation. 

As the modulation q vectors (38), (41) and (42) 
belong either to A* or to A~', the Fourier wave vectors 
of the modulated composite crystal are still expres- 
sible as integral linear combinations of the ones 
appearing in (28). Therefore, the dimension of the 
internal space remains d = d o = 1. This implies that the 
lattice of the modulated supercrystal is the same as that 
obtained for the basic structure, i.e. it is generated by 
(33) and its Bravais class is pc ~_/~n. 

The superspace symmetry group has to leave 
invariant the basic structure and the modulation. In the 
present case (d o = d), these two requirements imply 
that this group is the largest subgroup of pc  ~/m which 
satisfies (19) for the observed modulation. Since the 
translational symmetry has already been determined, 
it is sufficient to consider the two generators (37). 

Take gl first: for v = 1, one has 

Req = 2y(na~'3)=--q + na* 3. (43) 

This implies by (20) that 

K = - - n a ~ 2 = - - n a ~ ,  t h u s K r l j = 0  ( j = l ,  2) (44) 

and 
Rqa = (2y, i)(na'~3,nb*)(O,bl/2)=--nzc. (45) 

Substituting these results in (19), we find that the sym- 
metry condition becomes for the translational modes 

Ref ,  j (q)=(--1)nf*j (q):( - -1)n+l  flj(q), (46) 

and for the librational mode 

R e L~(q) = ( - 1 )  n L*j(q) = (--1) n Ll:(q). (47) 

Because of the polarizations (39) and (40), both (46) 
and (47) are satisfied. The corresponding relations for v 
= 2 are 

Req = 2y(ea*l + na* 3) = --q + ca* for e = 0,1, (48) 

giving by (26) and (20) 

K = - - ca* ,  Kr2j = --ez~ (49) 

and 

Rqa = (2y, i)(q,0)(0,½bl) = 0. (50) 

Substitution in (19) leads to the symmetry condition 

RE f2j(q) = (--1) '  f~'j(q) -- (--1) 1+' f2j(q). (51) 

Again, this relation is satisfied for the polarizations (41) 
and (42) observed. This shows that the superspace- 
group element gl as indicated in (37) is indeed a 
symmetry transformation for the modulated 
supercrystal. In the same way, one verifies that this is 
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also the case for g2. This exhausts the possibilities: 
therefore, the superspace group for the modulated 
supercrystal, i.e. the symmetry group of (TTF)7I 5 _~ is 

PC ~'s'n. (52) 

Notice that the polarizations and the phases observed 
are such as to allow the maximal symmetry compatible 
with that of the (incommensurable) basic structure. So 
by requiring that the modulation should be left 
invariant by the superspace group of the basic structure 
one would get for the modes involved exactly the 
polarization and phase relations which have been 
experimentally detected in this compound. 

5.  S e c o n d  e x a m p l e :  H g 3 _  s A s F e  

(a) General description 

The compound Hg 3 _ 6AsF6, known for the occur- 
rence of linear chains of mercury atoms (Brown et al., 
1974), has a phase transition at T c = 120 K. Above 
this temperature the diffraction pattern shows diffuse 
sheets, indicating partial occupation by mercury of 
different crystallographic positions. Below T c an 
ordered phase is observed. Its structure has been 
analyzed by Cutforth, Datars, Gillespie & Van Schijn- 
del (1976), Schultz et al. (1978) and by Pouget et al. 
(1978): it is that of an incommensurate composite 
crystal. Our determination of the superspace-group 
symmetry of this compound is based on the last paper 
quoted above. It is worth noting that although in the 
basic structure there exist complex relations between 
three mutually incommensurable crystallographic sub- 
systems, one single additional dimension suffices for its 
superspace description. 

These three subsystems are" 
(1) the AsF 6 subsystem (v = 1), with a body-centered 

tetragonal lattice, A 1, the so-called 'host lattice'; 
(2) af irs t  Fig subsystem (v = 2), with mercury atoms 

in chains parallel to the [100] direction of the host 
lattice and forming an A-centered monoclinic lattice, 
A2; 

(3) a second Hg subsystem (v = 3), with mercury 
chains parallel to the [010] direction of A 1 and building 
a B-centered monoclinic lattice, A a. 

Above T c the structure of this crystal has an average 
space-group symmetry I41/amd and the phases of the 
Hg chains are not ordered. Below T e phase ordering is 
observed together with a displacive modulation of the 
host lattice. This latter is neglected at first and will be 
taken into account latter on. 

As reference coordinate system we adopt that 
defined by the (non-primitive) conventional basis a, b, e 
of the host lattice. Accordingly, the v = 1 system has 
lattice A1 with basis 

a l l  = k - - ] , ] , ~ , ,  [ 1 1  IX at2 = (½, _],][) ,1 1 a l  3 = (½, ½ , - -½)  ( 5 3 )  

and corresponding reciprocal basis 

a* I = ( 0 , 1 , 1 ) , ,  a * 2 =  ( I , 0 , 1 ) , ,  a* 3 = ( 1 , 1 , 0 ) , .  ( 5 4 )  

The Bragg reflections characterizing this subsystem are 
indexed by (h,k,l).  with h + k + l = 2n. It has two 
formula units per primitive cell: two As at Wyckoff 
position (b) of the space group G I = I41/amd, four F 
atoms at Wyckoff position (c) and eight at position (g). 
This space group is generated by (53) and by 

{4zlrl i 3X!,. ~z,z,~j, (x,y,z) --, (.V + I , - x  + ¼, z + ~), 

{m,l(0,½,0)}: (x,y,z) -, (x, y + ½, -z ) ,  (55) 

{taxi0}: (x,y,z) --, (--x,y,z). 

The v = 2 mercury subsystem gives rise to Bragg 
reflections associated with the reciprocal lattice A~ with 
basis 

a*, = (3 - -  6 , - - 1  - -  6, 0 ) , ,  a* 2 = ( 0 , 1 , 1 ) , ,  
(56) 

a* 3 ---- ( 0 , 1 , - - 1 ) , ,  

the corresponding direct basis being 

a2, = (1/(3 - -  6 ) , 0 , 0 ) ,  a 2 2  = ((1 + 6)/2(3--  6), 1/2, 1/2), 

a 2 3 =  ((1 + 6)/2(3 -- 5), 1/2,--1/2). (57) 

This basis spans an A-centered monoclinic lattice, A z, 
with unique axis e. The value of 6in (56) and (57)is the 
same as the one appearing in the chemical formula; 3 - 
6 --~ 2.86. There is one Hg atom per unit cell and one 
may choose its position at 

r2, = (x,¼,~). (58) 

The space-group symmetry of this second subsystem is 
G 2 = A 2/m. 

The v = 3 mercury subsystem is associated with the 
Bragg peaks at (h - k6, k(3 - 6), l),, where h + k + l =  
2n and h, k, l are integers. Hence, one may choose as 
basis for the reciprocal lattice A~' 

a~" 1 = ( - -1  - -  6, 3 - -  6, 0 ) , ,  a~' 2 = ( 1 , 0 , 1 ) , ,  

a~' 3 = ( 1 , 0 , - - 1 ) , .  ( 5 9 )  

The corresponding basis for the direct lattice A 3 is 

a31=(0, 1/(3--6) ,0) ,  a32= (1/2,(1 + 6) /2(3--6) ,1 /2) ,  

a33 -- (1/2, (1 + 6)/2(3 -- di),--1/2) (60) 

and spans a B-centered monoclinic lattice, again with 
unique axis e. There is one Hg atom per unit cell at r31, 
and the space group is G 3 = B2/m.  The position of the 
mercury lattice array for v -- 3 with respect to that for 
v = 2 follows from the fact that the diffraction peaks with 
indices m(3 - 6, 3 - 6, 0),, which belong to both A* 
and A~, vanish for m = 1 and are strong for m = 2. 
There follows for r31 - -  r21 = (x,y,z) the condition 

x + y -- (2n + 1)/2(3 - 6), (n integer). (61) 
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Hence one can choose 

r31 = (0 ,  ;~ + X + 1/2(3 - b'), 0), 

where x has the same value as in (58). 

(62) 

(b) S y m m e t r y  o f  the basic  s t ruc ture  

All elements of  A*, A~' and A~ can be written as 
integral linear combinations of the following four 
vectors, 

a* = ( 0 , 1 , 1 ) , ,  a* = ( 1 , 0 , 1 ) , ,  a~' = ( 1 , 1 , 0 ) ,  

and a* = ( -5 ,  - 5 ,  0),. (63) 

This implies that the incommensurate basic structure 
has a four-dimensional superspace group as symmetry. 
Hence, d o = 1. Expressing the bases (54), (56) and (59) 
in terms of (63), one gets the matrices Z ~ defined in (2): (00 ) 

1 0 , Z 2 =  0 0 , 

0 1 i 1 

Z 3 =  1 0 

0 1 

Z I =  

(64) 

and the matrix o ° expressing a* in a*, a 2 , a~' as in (5): 

o ° = (0,0,--b'), (65) 

or, with respect to the non-primitive basis a*, b*, e*, 

cr ° = (--&--&0). 

The lattice 270 of the superspace group of the basic 
structure is spanned by 

aol = (al,0), ao2 = (a2,0), ao3 = (a3,fbl), (66) 

ao4 : (O,bl )  , 

where a t = all , i = 1, 2, 3 and b~ is a vector of  the 
internal space. 

The holohedry of 27 o is determined by A = A~ and (7 °. 
The matrix o ° (or o °) is not compatible with tetragonal 
symmetry (Janner, Janssen & de Wolff, 1979). Trans- 
forming the reference basis a, b, e to the following new 
one, we get 

A = a + b ,  B = b - - a ,  C = c ,  (67) 

which spans an F-centered lattice, one obtains a* = 
--25A*; this is compatible with orthorhombic sym- 
metry. Indeed, the Bravais class of £ o is 

eFmm i~ ~n (68) 

and the corresponding holohedry is generated by the 
three point-group elements 

R01 = (m,,--1): (x ,y , z , t )  ~ ( - -y , - -x , z , - - t ) ,  

R02 = ( m m l ) :  (x ,y , z , t )  - .  (y ,x ,z , t ) ,  (69) 

Ro3 = (mill, l): (x ,y ,z , t )  ~ (x ,y , - -z , t ) ,  

where the coordinates refer to the a, b, e, b~ basis of the 
superspace, as we shall continue to do in what follows: 
(x ,y , z , t )  = x a  + y b  + ze  + tb r Since the holohedry is 
orthorhombic and not tetragonal, one expects a 
distortion of the host lattice. This has indeed been 
observed: the angle between a and b deviates slightly 
from 90 ° . The embedding of the basic structure is given 
by (6) and (8) with 

7qb 1 = O, 7/:2b I - -  a21 ,  7~3b 1 = a31. (70) 

So a translation in the internal space leaves the first 
subsystem invariant but moves the Hg chains by an 
equal interval along their respective chain direction. 
Accordingly, the phase relationship expressed in (61) is 
conserved in such a transformation. Elements of the 
superspace-symmetry group of the supercrystal have to 
satisfy the conditions (12), (13) and (14), and their 
homogeneous part has to belong to the holohedry of 
27o; so we consider the three generators (69). The 
subsystem AsF 6 is necessarily mapped into itself: so 
v = 1 implies v' = 1. Furthermore, since lr 1 is the zero 
mapping the condition R e r l j  + v e = r~j, (mod A1) 
implies that for the translation v r one has to take a non- 
primitive translation associated with R e in the space 
group G 1 = I 4 J a m d .  

For R e = m I, R 1 = --1, one has v E = re(R01) = 
(],~,]). The subsystems 2 and 3 are interchanged: v = 2 
implies v' = 3 and v = 3 gives v' = 2. So the symmetry 
conditions become 

R E A I = A I ,  R e A 2 = A  3 and R E A 3 = A  2. (71) 

Furthermore, (14) is also satisfied. One also requires 

Rer21 + v e + zr3v / ~-  r31 (mod A 3 )  (72) 

and Rer3~ + v e + lr2v 1 -- r21 (mod A2), 

which are both satisfied by v E = vE(Rol) and v t = [J/2 
+ 2x(3  -- b')]br Hence, R0~ = (m,--1)  belongs to the 
point group and is associated with the non-primitive 
translation 

v ( R o l )  = (;], i ,  ;~, ~ / 2  -b' 2x(3 - -  J ) ) .  ( 7 3 )  

For R E = m m R I = 1, one has v E = V E ( R o 9  = kT,[l ;~,1 ~3~1" 
This element also interchanges the subsystems 2 and 3 
and (14) and (71) are again verified. Furthermore, (72) 
is now fulfilled for vt given by 

v,(R02) = ½Jb 1, (74) 
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so that Roz is also an element of the point group and 
has associated the non-primitive translation 

1 1 3  v(Roz) = (z,:,z, fi/2). (75) 

Finally, one considers R E = m m, R~ = 1 and v E = 
(0,½,0). In this case, v = v' for each subsystem. 
Equations (12) and (14) are verified immediately. 
Equation (13) is also solved by taking for v~ 

v I ( R 0 3  ) = (1 + 5)b1/2. (76) 

It is convenient to shift the origin of the internal space 
by - [ 5 / 4  + x(3  - 5)]b~, so that the non-primitive 
translations take the simpler form 

3 1 
v(R0t)  : a01 + ~a02 + a0s = (~,g,3,5), 

1 1 3  v(Ro2) = aol + %2 + ½%3 = (~,z,z,6/2), (77) 

v(R03) =½(%1 + a03 + a04) = (0, ½, 0, (I + 5)/2). 

Hence, the superspace group of the basic structure of 
Hg3_sAsF6 is 

Go pFddd  (78) 
= i l s "  

This group is generated by the translations (66) and by 
the following three elements: 

go1 (x ,y ,z , t )  --, (--y + 3 , - - x  + ¼, z + 3 , - - t  + 5), 

g02 (x ,y ,z , t )  --, (y  + ¼, x + ¼, z + 3, t + 5/2),  (79) 

go3 (x ,y ,z , t )  --, (x, y + ½, - z ,  t + (1 + 5)/2). 

This superspace group is non-symmorphic and gives 
rise to several systematic extinctions: those arising 
from the F centering and those from the non-primitive 
translations associated with the generators g0r In 
particular, the diffraction spots at (h ,k , l ,m) .  = ha* + 
kb* + le* + ma* are left invariant for l = 0 by R03 = 
(m~, 1). Accordingly, h + k even and m even are con- 
ditions imposed by the superspace-group symmetry on 
the Bragg peaks. This explains the extinction at (3 - 5, 
3 -- 5, 0).. 

(c) S y m m e t r y  o f  the m o d u l a t e d  s t ruc ture  

In addition to the reflections at positions which 
correspond to integral linear combinations of the 
vectors given at (63) there are satellite reflections which 
have their origin in the modulation of the subsystems. 
These spots appear at positions (h + 25, 0, l),  with 
(h + l) even in the k zone and at position (0, k + 2&/) , ,  
with (k + I) even in the h zone. These additional 
Fourier wave vectors can be expressed as integral linear 
combinations of aT,.. . ,  a* as in (63) and 

a* = (5 , -5 ,0 ) , .  (80) 

Accordingly, a two-dimensional internal space is 
required, and in this second example d = 2 > d o = 1. 
The symmetry group will then be a (3 + 2)-dimen- 

sional superspace group. To determine its lattice, Z, 
one notices that now (;0 

o =  _ 5 ' ( 8 1 )  

or, with respect to the non-primitive basis a*, b*, e*, 

Gc -~ - - 5  " 

The first row of these matrices describes a*, the second 
one a*. From the lattice A = A~ spanned by a~; a lv  a~3 
and from the matrix a c (or o) it follows that the Bravais 
class of the lattice 2; is 

p14/m;~. (83) 
p4 1 ~hm 

for A tetragonal. If A is orthorhombic, as it is in the 
present case because T < T o the Bravais class of X is 
given by 

pe,,,mm (84) 
p m m l  • 

The most general a matrix compatible with this Bravais 
class is 

Hence, the relation p = y = --5 is accidental, or, 
alternatively, the 6 appearing in the second row of (81) 
differs slightly from the 6 of the first row. This seems to 
be compatible with experiment. In any case, we go on 
using the matrix (81). The lattice 2; is then generated by 
the five basis vectors: 

a m = (al,Sb2), a2 = (a2,--5b2), a3 = (a3,Sbl), 
(86) 

a 4 = (0,b,), a s = (0,bz), 

where, as for the basic structure, a t = a~i i= 1, 2, 3, and 
now b I and b 2 are perpendicular vectors spanning the 
internal space. The holohedry of 2; is generated by 

R 1 = (Rol,1) = (mx, ml): (x ,y ,z , t ,u)  --, ( - -y , - -x ,z , - - t ,u) ,  

R 2 = (R02,--1) = (mll, mz): (x ,y ,z , t ,u)  --, ( y , x , z , t , - -u )  

R 3 = (Ro3,1) = (mill, I): (x ,y ,z , t ,u)  - ,  (x ,y , - -z , t ,u) ,  (87) 

where (x ,y ,z , t ,u)  = x a + y b  + zc  + tb~ + ub v Notice 
that the restriction to the (3 + 1)-dimensional subspace 
defines correspondingly the same transformation as in 
(69). 

Pouget et al. (1978) only found modulation of the 
Hg chain. No evidence could be detected for a 
modulation of the AsF 6 subsystem. The modulation 
vectors are 

q2 = (0,2&0), and q3 = (2&0,0), (88) 

for the displacive modulation in the subsystem v = 2 
and v = 3, respectively. The polarization observed is 
perpendicular to the chain direction and to the e axis. 
Thus, 

f21(q2)=(O,f,O) and f31(q3)=(f,O,O). (89) 
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To determine the superspace-group symmetry of the 
modulated supercrystal, one examines whether or not 
(19) is satisfied for the three generators R1, RE and R 3 
of the holohedry of 27, keeping in mind that the 
invariance of the basic structure imposes a condition on 
the (3 + 1)-dimensional component of the associated 
non-primitive translation v = v(R~), namely 

v(Ri )  -- [v(R0t ), ...], i =  1, 2, 3, (90) 

with v(Rol ) given as in (77). Let us also indicate the 
internal components one gets for the modulation 
vectors q~ and q2 by the embedding defined by (63), 
(80) and (86): 

q2,,= - b *  -- b*, q3/. = - b *  + b*. (91) 

We first consider R 1 as in (87) which transforms v , j  = 
2, 1 into v', j '  = 3, 1 and vice versa. Then, provided 
that fvl(-qv) = -fv~(qv), a property that can be obtained 
by an appropriate shifting of the origin in the internal 
space along b 2, one verifies the validity of (19) when the 
associated non-primitive translation is chosen to be 
v ( R  1) = a I + (3/2)a 2 + a 3. Comparison with (77) 
shows that (90) is also fulfilled. In the same way, R 2 = 
(R02,-1) also transforms v , j  = 2, 1 into v ' , j '  = 3, 1 
and vice versa. The corresponding K vectors are zero. 
The non-primitive translation that solves (19) and (90) 
is given by v(R2) = a 1 + a 2 + ½a a. Finally, for R 3 one 
has R j q  t = qi, i = 1, 2 and v ' , j '  = v, j ,  and for the 
associated non-primitive translation one gets v(R3) = 

½(a I + a 3 + a 4 + as). 
These calculations imply that the superspace group 

for the modulated crystal Hg 3 _ 6AsF 6 is 

G =  p F d d d  
pmrnd (92) 

which is generated by the five translations (86) and the 
three elements 

gl = {Rll½a2}, g2 = {R2[½a3} 
(93) 

and g3 = {R31½(al + a3 + a4 + as)}, 

with R i as in (8 7) 
Notice that in this case, as in all the preceding ones 

with commensurate or incommensurate basic structure, 
the (3 + d0)-dimensional component of the superspace 
group of the modulated structure is the full symmetry 
group of the basic structure; one can say that 
modulation which occurs takes into account this 
underlying symmetry. 

Nevertheless, we still have the feeling that in the 
present case the presence of the 2fi peaks is not 
completely understood [as already stated in Pouget et 
al. (1978)]. Not so much because of lack of knowledge 
of the detailed mechanism leading to the modulation of 
the mercury chains, but more because the increase in 
dimension of the internal space suggests the presence of 
a mechanism in addition to the more geometric one 
expressed by the parameter 3. Unexpectedly, however, 
as already mentioned above, this fi is the only para- 

meter appearing in the matrix e. Despite that, the 
superspace group symmetry of Hg 3 _ ~AsF 6 reveals the 
presence of rather sophisticated structural relations still 
fitting in a general frame of properties. 

6. Concluding remarks 

On the basis of the experimental data available for two 
compounds with intriguing crystallographic properties, 
the superspace-group symmetry description gives a 
consistent and coherent overall view of the structural 
implications of geometric invariance. The same type of 
laws governing crystal physics in the commensurate 
phases apply to the incommensurate ones, provided the 
right language is used. In deriving the results presented 
here, and in part I, the knowledge of the full list of (3 + 
1)- and (3 + 2)-dimensional Bravais classes played an 
important role (Janner, Janssen & de Wolff, 1979, 
1980) together with a knowledge of the basic properties 
of superspace groups (Janner & Janssen, 1979). 

The superspace-group approach gives a working 
scheme within which crystal structural analysis can be 
performed without being restricted by a commensurate 
supercell approximation. 
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